
Abstract. Even systems in which strong electron corre-
lation e�ects are present, such as the large near-
degeneracy correlation in a dissociating electron pair
bond exempli®ed by stretched H2, are represented in the
Kohn±Sham (KS) model of non-interacting electrons by
a determinantal wavefunction built from the KS molec-
ular orbitals. As a contribution to the discussion on the
status and meaning of the KS orbitals we investigate, for
the prototype system of H2 at large bond distance, and
also for a one-dimensional molecular model, how the
electron correlation e�ects show up in the shape of the
KS rg orbital. KS orbitals /HL and /FCI obtained from
the correlated Heitler-London and full con®guration
interaction wavefunctions are compared to the orbital
/LCAO, the traditional linear combination of atomic
orbitals (LCAO) form of the (approximate) Hartree-
Fock orbital. Electron correlation manifests itself in
an essentially non-LCAO structure of the KS orbitals
/HL and /FCI around the bond midpoint, which shows
up particularly clearly in the Laplacian of the KS
orbital. There are corresponding features in the kinetic
energy density ts of the KS system (a well around the
bond midpoint) and in the one-electron KS potential vs
(a peak). The KS features are lacking in the Hartree-
Fock orbital, in a minimal LCAO approximation as well
as in the exact one.

Key words: Electronic structure theory of atoms and
molecules ± Density functional theory ± One-electron
model ± Local kinetic energy and e�ective one-electron
potential ± Local e�ect of exchange and Coulomb
correlation

1 Introduction

The Kohn-Sham (KS) approach [1] provides an e�cient
method for practical applications of density functional
theory (DFT). As in other one-electron approaches, the

orbitals /i�~r� are de®ned within the KS theory through
one-electron equations with an e�ective one-electron
potential vs, which is purely local in the KS case,n
ÿ 1

2
r2 � vs�~r�

o
/i�~r� � �i/i�~r�; �1�

and for the non-degenerate ground state of an N-elec-
tron system the N occupied KS orbitals yield the exact
electron density q�~r�XN

i�1
j/i�~r�j2 � q�~r�: �2�

However, in spite of their one-electron appearance,
Eqs. (1) and (2) take electron correlation into account
e�ectively. In cases where the electron correlation e�ects
are strong, in the sense that the single-determinantal
wavefunction of the Hartree-Fock (HF) model is a poor
approximation to the exact wavefunction, the KS model
system of noninteracting electrons is still described by a
single determinant built from the KS orbitals. This raises
the question: What is the status and meaning of the KS
orbitals as compared to the HF orbitals? It has been
argued [2±4] that the KS orbitals are physically mean-
ingful, being solutions to a one-electron Hamiltonian
describing an electron moving in the local KS potential
vs�~r� with the following components

vs�~r� � vext�~r� � vH �~r� � vxc�~r�; �3�
The external (attraction by the nuclei) and Hartree
(Coulomb repulsion by all electrons) potentials are the
largest contributions in vs�~r�, which it shares with the
Hartree-Fock ``potential''. The exchange-correlation
potential vxc�~r� has as its largest contribution the
potential due to the average Fermi hole, the exchange
term in the HF operator being the potential of an
orbital-dependent Fermi hole. The often noted similarity
between the HF and KS orbitals can be explained
immediately from the similarity between the KS and HF
``potentials''. However, there are subtle di�erences
which arise from contributions to vxc�~r� that have no
analogue in the HF operator, such as the potential of the
Coulomb hole, and the so-called kinetic and response
potentials, which we have discussed before [4±7]. It has,
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for instance, been pointed out [8±10] that electron
correlation, represented by the Coulomb hole potential,
leads to contraction of the KS orbitals /i�~r� around the
nuclei as compared to the HF orbitals, which leads to a
higher value of the kinetic energy Ts of the KS system as
compared to the corresponding HF kinetic energy THF.
One wonders if other correlation e�ects can be identi®ed
in the KS orbitals. A well-known case of strong
correlation is the weak electron pair bond, exempli®ed
by H2 at large bond distance. Even in this case of strong
mixing of the doubly excited determinant j�ru�2j with the
HF determinant j�rg�2j, the KS model still uses a single
determinant for noninteracting electrons. In this paper
we investigate whether and how the e�ect of electron
correlation manifests itself in the shape of the rg KS
orbital in this prototype case of strong near-degeneracy
correlation.

Molecular orbitals are often represented with a linear
combination of atomic orbitals (MO-LCAO), either in a
minimal basis or with extended basis sets. In the case of
the H2 molecule at large bond distance R(HAH), the rg
orbital of H2 is represented within the minimal LCAO
approximation simply as

/LCAO�~r� � 1��������������
2� 2S
p �a�~r� � b�~r��; �4�

where a�~r� and b�~r� are the 1s AOs of the H atoms A and
B, and S is the overlap integral

S �
Z

a�~r�b�~r�d~r: �5�

We note that the HF rg orbital has the tendency for
large R to become rather more di�use around the H
nuclei than the atomic 1s orbitals, but in a simple
multicon®guration self-consistent ®eld (MCSCF) solu-
tion with just the �rg�2 and �ru�2 con®gurations, this will
be corrected. We will compare accurate KS orbitals to
the simple minimal basis MO-LCAO approximation
(Eq. 4), which when squared provides the proper density
q�~r� in the atomic regions of A and B, not the di�use HF
density. We note that the KS orbital cannot be expected
to deviate from Eq. (4) signi®cantly, if at all, in the
atomic regions, but the ability of the MO-LCAO
expansion form (Eq. 4) to describe the KS orbital in
the bond midpoint region is not immediately evident.

In this paper accurate Kohn-Sham orbitals /HL and
/FCI are obtained for the H2 molecule at large bond
distances from the correlated Heitler-London (HL) and
full con®guration interaction (FCI) wavefunctions. We
also consider the case of a one-dimensional model of
``two hydrogen-like atoms'' discussed before by Perdew
[11]. It will appear that the KS orbitals /HL and /FCI

have an essentially non-LCAO structure, which shows
up in particular in the behaviour of the Laplacian of /i
around the bond midpoint. The corresponding kinetic
energy density per particle,ÿ 1

2/�r2/=q, has a well
around the bond midpoint, which increases with the
bond distance and which compensates the corresponding
peak of the KS potential [5]. Contrary to this, the MO-
LCAO expansion (4) lacks these features. The reasons
for this di�erence will be elucidated by means of the one-
dimensional model.

2 Results for H2 and a one-dimensional molecular model

We shall demonstrate the bond-midpoint behaviour of
the KS solution for the H2 molecule. Writing an
approximation for the single KS orbital of H2 in the
following general form,

/�~r� � 1����������������������
2�1� F S�p �����������������������������������������������������

a2�~r� � 2Fa�~r�b�~r� � b2�~r�
q

; �6�

we note that with F � 1 /�~r� of Eq. (6) turns to the
LCAO form /LCAO (Eq. 4), while with F � S it

represents the HL form /HL. When squared, /HL yields

a density, which corresponds to the HL correlated

wavefunction [12]

WHL�~x1;~x2� � a��~r1�b�~r2� � a��~r2�b�~r1�
2�1� S2�12

� �a�s1�b�s2� ÿ a�s2�b�s1��; �7�
where f~xig � f~ri; sig; f~rig are the space and fsig are

the spin variables. WHL properly describes electron

correlation in the H2 molecule at large bond distances
R(HAH). It is to be noted that the electron densities
j/�~r�j2 of both forms of Eq. (6), with F � 1 and F � S,
correctly reduce to the corresponding atomic densities
a2�~r� and b2�~r� in the atomic regions of A and B.

Even at intermediate distances, an essentially accu-
rate KS orbital can be obtained from FCI calculations of
the ground state H2:

/FCI�~r� �
���������������
qFCI�~r�

2

r
: �8�

The density qFCI in Eq. (8) has been obtained from FCI
calculations in a basis with ®ve s- and two p-type
contracted Gaussian functions [5, 13, 14] and an extra
d-type Gaussian with the exponent a � 1:0 for each
H atom. Characteristics of /LCAO and /HL will be
compared with those of the accurate KS orbital /FCI. On
a technical note we mention that care has to be taken to
avoid spurious oscillations which may arise when
obtaining HF or KS kinetic energy densities simply by
taking second derivatives of the corresponding orbital
when the latter is expanded in Gaussian basis functions.
Due to the shape of the Gaussian basis functions,
oscillations in the second derivative may arise even when
the Gaussian representation of the orbital is everywhere
close to the true (basis set-free) one. We will discuss this
point, which has some relevance for the problem of
obtaining accurate KS potentials from CI densities,
elsewhere.

Qualitative features of the three-dimensional KS so-
lution in the bonding region of H2 are also reproduced
with a one-dimensional model of two interacting ``hy-
drogen-like atoms'' [11]. In this model a single electron
of the ``atom'' A is bound to the external delta-function
potential vA � ÿ

�����
2I
p

d�x�, so that the atomic ioniza-
tion energy is I and the ``atomic'' orbital is a�x� �
�2I�14 exp�ÿ�2I�12jxj�. Similarly, for the ``atom'' B the
external potential is vB � ÿ

�����
2I
p

d�xÿ R� and the atomic

orbital is b�x� � �2I�14 exp�ÿ �����
2I
p jxÿ Rj�; with R being
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the bond distance. Within this model one can consider a
one-dimensional analog /1D of the form (6)

/1D�x� � 1��������������������
2�1� FS�p ������������������������������������������������������

a2�x� � 2Fa�x�b�x� � b2�x�
q

�9�

where S is the overlap integral of the orbitals a�x� and
b�x�. With F � 1 Eq. (9) represents an analog /1DLCAO

of the LCAO form (Eq. 4), while with F � S it is an

analog /1DHL of HL form.
In Fig. 1 the form of the orbitals /LCAO�~r�; /HF�~r�;

/HL�~r� and /FCI�~r� is compared for the bond distance
R�HAH� � 5:0 a.u. The orbitals are plotted as functions
of the distance z from the bond midpoint. The HF model
leads to an orbital that is rather more di�use than the
minimal LCAO orbital. It is lower at the nuclei and
higher in the tails (not visible in the ®gure). This is a
direct consequence of the unphysical behaviour of the
Fermi hole in stretched H2 [8, 10]. The other orbitals all
have the same form and are rather close to each other.
The largest di�erence observed is that between /LCAO on
the one hand and /HL; /FCI on the other hand in the
bond midpoint region.

In contrast to this, the Laplacian r2/ which
yields the kinetic energy of the KS system has quite a
di�erent form for /LCAO and /HL; /FCI in the bond

midpoint region. In order to illustrate this, in Fig. 2
values r2 /LCAO and r2/HL are presented calculated
at R�HAH�� 10:0 a.u. for points which are placed at the
bond axis around the bond midpoint at z � 0. r2/LCAO

is a monotonic function of z in this region and it exhibits
a minimum at the bond midpoint. Contrary to this,
r2/HL passes through symmetric local minima and
reaches a local maximum at the bond midpoint.

This qualitatively di�erent behaviour of the Laplaci-
ans has a spectacular e�ect on the corresponding kinetic
energy densities ts�~r�:

ts�~r� � ÿ/�r2/�~r�
2q�~r� � 1

8

�rq�2
q2
ÿ 1

4

r2q
q

: �10�

In Fig. 3 tLCAOs ; tHLs and tFCIs are plotted as functions of z
for R(HAH) � 5:0 a.u. There is also plotted their one-
dimensional analogue

t1D
s �x� � ÿ

1

2/�x�
d2/�x�

dx2
� 1

8q2�x�
dq
dx

� �2

ÿ 1

4q�x�
d2q
dx2

;

�11�
calculated with the HL form /1DHL�x� of Eq. (9) with
F � S and I � 0:5 a.u.

One can see from Fig. 3 that tLCAOs has a shallow
form in the bond midpoint region. Contrary to this, tFCIs

Fig. 1. Comparison of the HF rg molecular orbital and the full-CI
(FCI), Heitler-London (HL) and LCAO Kohn-Sham orbitals for
stretched H2 (bond distance R � 2 bohr)

Fig. 2. Comparison of the Laplacians of the Heitler-London (HL)
and LCAO Kohn-Sham orbitals around the bond midpoint for H2

with bond distance R � 10 bohr
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and tHLs exhibit a characteristic feature of the KS solu-
tion, namely, a rather deep well of ts around the bond

midpoint. tFCIs and tHLs are close to each other for all z, so
that the HL construction employed adequately repro-
duces, at this large bond distance, the correlation e�ect
on the form of the KS solution. In the one-dimensional
model this well of ts is qualitatively reproduced by the
one-dimensional analogue t1DHLs . While for the LCAO
form /1DLCAO�x� the corresponding kinetic energy den-
sity is a constant t1DLCAOs �x� � ÿ0:5 a.u. (see below),
t1DHLs exhibits a well around z � 0.

In Fig. 4 the functions tHLs are compared for
R(HAH) � 5:0 a.u. and R(HAH) � 10:0 a.u. For both
bond distances the characteristic features of ts are sin-
gularities at the nuclei where ts diverges and the above-
mentioned well around the bond midpoint z � 0. The
depth of the well increases with increasing bond distance
and the minimum of ts at the bond midpoint approaches
for increasing bond distance the limiting value of twice
the ionization energy: ts�z � 0� ! ÿ2I � ÿ1:0 a.u.

The observed behaviour of the Laplacian of the KS
orbital /s (either represented by /HL or by /FCI) around
the bond midpoint, and the corresponding well of the
KS kinetic energy density ts, are a direct consequence of
electron correlation e�ects. We may describe these
e�ects in a simpli®ed model by admitting con®guration

mixing of the HF j�rg�2j con®guration with j�ru�2j to
obtain the wavefunction

WCI � cgjrga�1�rgb�2�j � cujrua�1�rub�2�j �12�
yielding the KS orbital

/s �
������
1

2
q

r
�

���������������������������������
c2gjrgj2 � c2ujruj2

q
: �13�

We use a minimal basis of atomic H 1s orbitals,

1s�~r� �
�����
a3

p

r
eÿar; a �

�����
2I
p

� 1:0; �14�

so that in the limit of large distance R between the
hydrogen atoms S ! 0; cg ! �1=

���
2
p

; cu ! ÿ1=
���
2
p

,
and WCI becomes identical to the HL wave function.
An obvious di�erence between the rg and ru orbitals is
that the ru has a node at the bond midpoint, M , so the
con®guration mixing reduces the density around M . This
shows up in the lower values of the KS orbital around
M compared to /LCAO in Fig. 1. For the behaviour of
the Laplacian in the neighbourhood of M it is important
that the ®rst derivative with respect to z (taking the
molecule to lie along the z-axis) of ru is nonzero
(negative when giving a�~r� a positive sign in ru), all
other ®rst derivatives being zero:

Fig. 3. Comparison of the FCI, HL and LCAO local Kohn-Sham
kinetic energies for H2 and the HL and LCAO ones for a one-
dimensional model, for a bond distance of 5.0 a.u.

Fig. 4. Comparison of the HL local Kohn-Sham kinetic energies
calculated for H2 at the bond distances of 5.0 and 10.0 a.u.
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d

dz
ru�M� � ÿ

��������������
2� 2S
2ÿ 2S

r
rg�M� �15�

d

dx
ru�M� � d

dy
ru�M� � 0;

d

dx
rg�M�

� d

dy
rg�M� � d

dz
rg�M� � 0: �16�

The second derivatives for both ru and rg obey the
relations

d2

dx2
r�M� � d2

dy2
r�M� � ÿ 2a

R
r�M�; d2

dz2
r�M�

� a2r�M�: �17�
For rg the saddlepoint at M is consistent with the
positive ``parallel'' second derivative �d2=dz2� and nega-
tive ``transverse'' second derivatives �d2=dx2 and d2=dy2�.
All second derivatives are zero at M for the ru. For the
Laplacian and kinetic energy density we obtain

ts�M� �
2/�s �ÿ 1

2r2�/s

q
�
ÿ�c2g � c2u�a2 � 4a

R c2g
h i

jrg�M�j2

2�c2gjrg�M�j2 � c2ujru�M�j2�

� ÿ a2

2
� 2a

R
ÿ a2

2

c2u
c2g

 !
: �18�

Without electron correlation �cu � 0� the kinetic energy
density is determined by the ®rst two terms on the last
line. The ®rst term, due to the z-component of the
Laplacian, has the value ÿI � ÿ0:5 a.u. At the relatively
large distance of 5 a.u., the second term, due to the
x- and y-components of the Laplacian, still adds a
correction of �0:4 a.u. to this term, leading to the much
higher tLCAOs �M� of ca. ÿ0:1 a.u. compared to the
ÿI � ÿ0:5 of t1DLCAOs �M� of the one-dimensional
model. When R tends to in®nity the ``transverse
components'' of the Laplacian go to zero at M according
to Eq. (18) and ts of minimal LCAO H2 will become
equal to the ÿ0:5 of the 1D model, where no transverse
components exist. Electron correlation adds another
ÿa2=2 � ÿ0:5 multiplied by the factor c2u=c2g. This factor
tends to 1 when the electron correlation becomes very
strong at large distance. It is already rather large at R
� 5 a.u., which explains the considerably lower values of
tFCIs �M� and tHLs �M� in Fig. 3 than tLCAOs �M�. The
``correlation dip'' in ts, coming from the parallel
component of the Laplacian, is in fact similar in the
1D model and in the H2 case. It is the contribution of
�0:4 a.u. at R � 5 bohr of the transverse components
that shifts the ts�M� values of H2 up with respect to the
1D model and makes them deviate from their limiting
value at R � 1 (ÿ0:5 and ÿ1 resp. for tLCAOs �M� and
tHLs �M� resp.), but Fig. 4 demonstrates for tHLs �M� the
tendency to approach the limiting value at R � 10 a.u.

The special correlation induced features that we have
identi®ed around the bond midpoint are very clear at
large bond distances. One way wonder to what extent
they show up at shorter distances, in particular the
equilibrium bond distance. Figure 5a shows the Lap-
lacians of the HF orbital and FCI KS orbital of H2 at
Re. The di�erence is visible but not at all striking. Still,

the correlation e�ects are present, but at Re they are
masked by the dominance of the large external (nuclear)
and Hartree potentials, as may be seen from the relation

1

2
r2/ � �Vext � VH � vxc ÿ ��/: �19�

In order to demonstrate that correlation e�ects, even if
they are small, are de®nitely present we subtract our
from ÿts the large terms Vext and VH , which are at Re very
similar in the HF and FCI cases. Figure 5b shows plots
of ÿts ÿ Vext ÿ VH , which demonstrate that without the
dominating nuclear and electronic coulombic potentials
the correlation e�ects clearly show up. Note that Fig. 5b
e�ectively compares, apart from the constant �; vxc and
vx in the KS and HF cases respectively.

In order to provide a solution of the one-electron
Eq. (1), which requires that ÿ 1

2r2/=/� vs will be the
constant � also around the bond midpoint, a counter-
balance to the well of ts is developed in the KS potential,
namely, the well-known bond midpoint peak vs, which is
known to become pronounced at large bond distance [5].
It clearly shows up in Fig. 6 if one compares vLCAOs to
the potentials vHLs and vFCIs . These potentials are ob-
tained at R(HAH) � 5:0 a.u. by means of insertion of
/LCAO; /HL and /FCI respectively into Eq. (1). The or-
bital energy � in Eq. (1) is equal to minus the ionization
energy of the system, which at large bond distances is

Fig. 5a. Laplacians of the Hartree-Fock and the full-CI Kohn-Sham
orbitals for H2 at equilibrium distance
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close to the atomic ionization energy I � 0:5 a.u. Taking
this into account, we construct vLCAOs and vHLs with
� � ÿ0:5 a.u., while for vFCIs the value � � ÿ0:48 a.u. is
used, which has been obtained with the FCI calculations
of H2 and H�2 at R(HAH) � 5:0 a.u. [5].

Figure 6 is essentially the counterpart of Fig. 3. vHLs
and vFCIs possess a peak at the bond midpoint which
compensates the well of ts; while vLCAOs has a relatively
shallow form. The e�ect looks even more spectacular for
the one-dimensional potentials v1D

s , which are con-
structed by the insertion of � � ÿ0:5 a.u. and /1DLCAO

or /1DHL into the one-dimensional analogue of the KS
equation (1). v1DLCAOs is zero everywhere but at the nu-
clei, where, according to the construction, it turns to a
delta-function. Contrary to this, v1DHLs exhibits a peak at
the bond midpoint with the height of the peak being
close to 0.5 a.u. (see Fig. 6).

Finally we note that the correlation-induced features
in ts around the bond midpoint are large at large bond
distances, but because the density then becomes rather
low in that region, the energetic e�ect is rather small.
This would be di�erent if the density were high in the
region where the correlation e�ects occur. Such cases
exist and will be examined in the future. It may be in-
teresting to note that the less spectacular correlation-

induced contraction of the electron density around the
nuclei, which shows up in the considerably higher peaks
of the KS orbital at the nuclei compared to the HF or-
bitals in Fig. 1, does have large energetic consequences,
since it occurs in a region where the nuclear attraction
potential and the electronic density are high. These
consequences have been discussed before [8, 10].

3 Conclusions

We have shown that the KS molecular orbitals may
exhibit features that are intimately related to the fact
that these orbitals incorporate the e�ects of electron
correlation. In the prototype case of near-degeneracy

correlation, stretched H2, the e�ect of strong admixture

of the j�ru�2j con®guration, or equivalently the use of the
HL wavefunction, introduces special behaviour of the
KS orbital around the bond midpoint. The special bond
midpoint features of this KS orbital, as well as the
related well of the KS kinetic energy density ts, have been
related to the striking bond midpoint peak of the KS
potential vs found earlier [5]. The peak of vs has been
derived from the ``dynamical'' properties of the condi-
tional probability amplitude, describing the exchange

Fig. 5b. The Hartree-Fock kinetic energy density compared to the
Kohn-Sham one (derived from a full-CI calculation), after subtraction
of the external and Hartree potentials (see text), for H2 at equilibrium
distance

Fig. 6. Comparison of the Kohn-Sham potentials that reproduce the
FCI, HL and LCAO electron densities for H2 at 5 bohr and the HL
one for a one-dimensional model
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and Coulomb holes. These hole properties are absent
from the HF wavefunction, but are built in by going to

the HL wavefunction or by admixing of j�ru�2j. Qual-
itative analysis and the results of calculations show that
the depth of the ts well and the height of the vs peak
increase with increasing bond distance, i.e. increasing
con®guration mixing, approaching the values ÿ2I and I ,
respectively, in the bond dissociation limit. One can
expect similar e�ects in the bonding region whenever a
weak covalent bond (large HF error) is present.

Being (up to a phase factor) the square root
��������
q=2

p
of

the correlated density q, the KS / has an essentially non-
LCAO form. Clearly, the minimal MO-LCAO form
(Eq. 4) lacks the above-mentioned features around the
bond midpoint. It is, of course, possible to build in these
features by extending the basis set, since even with atom-
centred basis sets a complete basis can in principle be
constructed. Nevertheless, the MO-LCAO expansion is
best suited to describe features in the atomic regions and
one may expect a worse performance of the MO-LCAO
expansion when it comes to representing features in the
bond midpoint region. In the present case the correlation
e�ects show up at large bond distance around the bond
midpoint, i.e. in a region where the density is low, and the
energy is not signi®cantly a�ected. A traditional ex-
tended basis set will be able to provide a good approxi-
mation to the KS orbitals in the atomic regions and will
not lead to signi®cant errors in the energy of a KS cal-
culation. However, a more de®nitive assessment of using
traditional basis sets can only come from examining
cases where strong con®guration interaction leads to
similar special e�ects in regions where the density is high.
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